New Publication: An Investigation of the Efficacy and Mechanism of Contrast-enhanced X-ray Computed Tomography Utilizing Iodine for Large Specimens through Experimental and Simulation Approaches

Screen Shot 2016-01-18 at 11.26.23 AM
Model and experimental data show the temporal and spatial profile (zones 1, 2, and 3) of iodine concentration. By recalibration of staining duration, a constant flux at the boundary condition in the model is generally expected to be met by maintaining the solution concentration in a certain level.

“There has been very limited data available to inform detailed protocols for staining large specimens using diceCT. In our study, we systematically assessed the efficacy and mechanism of diffusion-based contrast-enhanced X-ray Computed Tomography (CT) with serial experiments and the validation of numerical modeling. We have applied a Diffusion-Sorption model to explain the CT contrast increasing pattern within the cranial tissues of a goose specimen over a long staining duration. We identified attributes of different tissues that affect the effective diffusion rate and staining efficacy, including partition coefficient, bulk density and tissue porosity. Based on our results, specific protocols—customized by tissue size and type—can be designed for diceCT to maximize visualization of these soft tissues contrasts.”

–Lead Author Zhiheng Li @

Head over to BMC Physiology to read the pub!

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s