New Publication: Assessment of the Hindlimb Membrane Musculature of Bats: Implications for Active Control of the Calcar

Screen Shot 2018-02-12 at 10.01.28 AM
3D diceCT models and histological sections through the calcar of (a) Myotis californicus, (b) Artibeus jamaicensis, (c,d) Molossus molasses. Specimens were stained with Lugol’s iodine for contrast-enhanced X-ray µCT imaging, subsequently destained by leaching in 70% EtOH, and re-stained for histological sectioning using Modified Mayer’s Hematoxylin and Mallory triple connective tissue stains. Abbreviations: Ca, calcar; m.A, additional muscle in M. molossus; m.CC, m. calcaneocutaneous; m.D, m. depressor ossis styliformis; m. DP, m. depressor ossis styliformis profundus; m.DS, m. depressor ossis styliformis superficialis.

“Exploring the detailed muscular anatomy of very small mammals is difficult to do using dissection alone since often the details are damaged before they can be observed properly. Here, we used diceCT to learn more about the musculature associated with the bat calcar — a skeletal novelty found in bat feet. DiceCT combined with standard histology revealed anatomical variation among the calcar musculature of different bat species that quite possibly has functional implications. This could mean that the calcar has functionally diversified among bats. DiceCT is an extremely useful tool for revealing previously-unknown anatomical diversity, especially in small animals.”


Lead author, Kathryn Stanchak (@)

See more of this research at the Bat Cave on Twitter, the Santana Lab website, and read the the pub at The Anatomical Record!

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s